Cale M. Gentry

School Address

Department of Electrical, Computer, and Energy Engineering University of Colorado Boulder Boulder, CO 80309 (303) 492-7327 Cale.Gentry@Colorado.edu

EDUCATION

<i>Ph.D.</i> , Electrical Engineering University of Colorado Boulder, Boulder, CO		in progress
Master of Science, Electrical Engineering University of Colorado Boulder, Boulder, CO	GPA 3.77	May 2013
Bachelor of Science, Engineering Physics Minor in Mathematics University of Oklahoma, Norman, OK	GPA 3.92	May 2011

PROFESSIONAL EXPERIENCE

University of Colorado Boulder Graduate Research Assistant Nanophotonic Systems Laboratory, PI: Miloš A. Popović

- Developed a two-dimensional Eigen-Mode Expansion (EME) Method-based numerical simulation tool in MATLAB. This included a slab waveguide eigensolver (finding a complete set of discrete modes) and a scattering matrix-based mode matching technique to model the optical properties of nanophotonic devices, with emphasis on fiber-to-chip grating couplers. The tool incorporates perfectly matched layer (PML) boundary conditions and supports complex indices of refraction.
- Introduced a novel concept for single-mode selection and ultrabroad tuning in microphotonic lasers utlizing "imaginary-frequency splitting" due to far field interference and a Vernier-like tuning mechanism in a 'Dark State Laser' resonant geometry
- Designed integrated nanophotonic devices with primary emphasis in nonlinear optical phenomena such as Four-wave mixing in microcavities.
- Performed thorough testing of both active and passive nanophotonic devices.
- Experience designing and testing photonic devices integrated in Silicon- and SiN-based platforms at wavelengths ranging from 400 nm to 1640 nm.
- Collaborate with researchers at NIST in implementing photon number resolving transition edge sensors (TES) and superconducting single photon detectors coupled evanescently via waveguides.
- Developed a numerical simulation tool to design optimally dispersion-less azimuthally symmetric microcavities for Four-wave mixing applications.
- Demonstrated the first example of wavelength conversion in an unmodified CMOS electronics platform.
- Demonstrated the first generation of quantum-correlated photons directly from a commercial CMOS microelectronics microchip.

August 2011 - Present

June - August 2010

National Institute of Standards and Technology (NIST) Boulder Summer Undergraduate Research Fellowship (SURF) Program Quantum Electrical Metrology Division (817), Boulder, CO

- Collaborated in the development of a reference system for the characterization and calibration of passive 350 GHz imaging systems. The reference system utilized an array of superconducting transition edge sensors operating at cryogenic temperatures.
- Collaborated in the assembly and calibration of the THz system
- Numerically modeled optical transmission properties of system.
- Worked with cryogenic electronics and ultra high vacuum.

University of Oklahoma

Senior Capstone Project Department of Physics, PI: J. Shaffer

- Designed and fabricated microchips for trapping ultracold atoms.
- Photolithography, metal evaporation and gold electroplating to fabricate wires on AlN substrates.

Montana State University, Bozeman, MT

National Science Foundation (NSF) Research Experience for Undergraduates (REU) Condensed Matter/Laser Physics

- Fabricated and characterized a tunable external cavity diode laser.
- Performed optical experiments in the laboratory concerning confocal Fabry-Perot interferometers for use in LIDAR receivers.

Baker Hughes Inc.

Hughes Christensen Co., The Woodlands, TX Manufacturing Department Engineering Intern

- Researched the profiles of wear flats on diamond cutters taken from drill bits from the field.
- Developed standard operating procedures for manufacturing equipment.

JOURNAL PUBLICATIONS

In Preparation

• C. M. Gentry, J. M Shainline, M. W. Wade, M. J. Stevens, S. D. Dver, X. Zeng, F. Pavanello, T. Gerrits, S. W. Nam, R. P. Mirin, and M. A. Popović, "Quantum-correlated photon pairs generated in commercial 45 nm complementary metal-oxide semiconductor microelectronics," available on arXiv: 1507.01121 (2015).

Published

- X. Zeng, C. M. Gentry, and M. A. Popović, "Four-wave mixing in silicon coupled-cavity resonators with port-selective, orthogonal supermode excitation," Optics Letters 40, 2120 (2015).
- C. M. Gentry, Xiaoge Zeng, and M. A. Popović, "Tunable coupled-mode dispersion compensation and its application to on-chip resonant four-wave mixing," Optics Letters 39, 5689 (2014). available on arXiv: 1406.2750 (2014).
- C. M. Gentry, and M. A. Popović, "Dark State Lasers," Optics Letters 39, 4136 (2014). available on arXiv: 1402.4767 (2014).

August 2010 - May 2011

June - August 2009

June - August 2008

CONFERENCE PRESENTATIONS

Submitted

• N/A

Published in Conference Proceedings

- C. M. Gentry, M. T. Wade, J. M. Shainline, X. Zeng, M. J. Stevens, S. D. Dyer, F. Pavanello, S. W. Nam, R. P. Mirin, and M. A. Popović, "Microresonator Source of Photon Pairs Integrated in 45 nm CMOS," at *Single Photon Workshop 2015* (Geneva, Switzerland 2015).
- M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, "75% Efficient Wide Bandwidth Grating Couplers in 45 nm Microelectronics CMOS Process," at *Optical Interconnects: 2015*, presentation TuB4.
- C. M. Gentry, M. T. Wade, X. Zeng, F. Pavanello, and M. A. Popović, "Low-Power Parametric Wavelength Conversion in 45 nm Microelectronics CMOS Silicon-On-Insulator Technology," in *CLEO: 2015*, OSA Technical Digest (Optical Society of America, 2015), paper STu2I.7.
- C. M. Gentry, X. Zeng, and M. A. Popović, "A discrete resonance, all-order dispersion engineering method for microcavity design for four-wave mixing," in *Frontiers in Optics 2014*, OSA Technical Digest (Optical Society of America, 2014), paper FTu5D.3.
- C. M. Gentry, X. Zeng, and M. A. Popović, "Wide-band on-chip four-wave mixing via coupled cavity dispersion compensation," in *CLEO: 2014*, OSA Technical Digest (Optical Society of America, 2014), paper SW3M.2.
- X. Zeng, C. M. Gentry, and M. A. Popović, "Four-wave mixing in silicon "photonic molecule" resonators with port-selective, orthogonal supermode excitation," in *CLEO: 2014*, OSA Technical Digest (Optical Society of America, 2014), paper SW3M.3.
- M. T. Wade, R. Kumar, K. Nammari, C. M. Gentry, J. Shainline, J. S. Orcutt, A. Tamma, R. Ram, V. Stojanovic, and M. A. Popović, "Unidirectional chip-to-fiber grating couplers in unmodified 45nm CMOS Technology," in *CLEO: 2014*, OSA Technical Digest (Optical Society of America, 2014), paper STh3M.5.
- D. Becker, C. M. Gentry, I. Smirnov, P. Ade, J. Beall, H. -M. Cho, S. Dicker, W. Duncan, M. Halpern, G. Hilton, K. Irwin, D. Li, N. Paulter, C. Reintsema, R. Schwall, C. Tucker, "Standoff passive video imaging at 350 GHz with 251 transition edge sensor bolometers," *Proc. SPIE* 9078, Passive and Active Millimeter-Wave Imaging XVII, 907804 (June 9, 2014).
- C. M. Gentry and M. A. Popović, "Dark State Lasers," in *CLEO: 2013*, OSA Technical Digest (Optical Society of America, 2013), paper CM3F.1.
- D. Becker, C. M. Gentry, P. Ade, J. Beall, H. Cho, S. Dicker, W. Duncan, M. Halpern, G. Hilton, K. Irwin, P. Lowell, M. Niemack, N. Paulter, C. Reintsema, F. Schima, R. Schwall and C. Tucker, "High-resolution passive video-rate imaging at 350 GHz," *Proc. SPIE* 8022, Passive Millimeter-Wave Imaging Technology XIV, 802206 (May 25, 2011).

Conferences without Published Proceedings

- C. M. Gentry, M. T. Wade, J. M. Shainline, X. Zeng, M. J. Stevens, S. D. Dyer, F. Pavanello, S. W. Nam, R. P. Mirin, and M. A. Popović, "Photon Pair Source Integrated in a Commercial 45 nm CMOS Microelectronics Platform," presented at *PICQUE Scientific School in integrated quantum photonics applications: from simulation to sensing* (Rome, Italy 2015).
- D. Becker, C. M. Gentry, J. Beall, H. Cho, W. Duncan, D. Li, G. Hilton, K. Irwin, N. Paulter, C. Reintsema, R. Schwall, P. Ade, C. Tucker, S. Dicker, and M. Halpern, "Passive video imaging at 350 GHz with 251 transition edge sensor bolometers," *Proc. SPIE* 8900, Millimetre Wave and Terahertz Sensors and Technology VI, 890031 (Sept 24, 2013).

- K. Nammari, C. M. Gentry, M. A. Popović, "Efficient, fiber-to-chip coupling and optical throughsilicon vias for monolithically integrated eletronic-photonic circuits," USNC-URSI National Radio Science Meeting (2013)
- A. Schwettmann, J. Sedlacek, C. M. Gentry, J. Shaffer, "Probing RF electric fields with Rydberg atoms," APS Division of Atomic, Molecular and Optical Physics, Vol. 56, Num. 5 (2011)

COMPUTING SKILLS

- Proficient in MATLAB, Mathematica, LaTeX, Microsoft Office
- Proficient writing and running optical simulation codes such as eigenmode solvers, Finite Difference Time Domain (FDTD), beam propagation etc...
- Experience in COMSOL, Sentaurus-Synopsys, AutoCAD, SolidWorks, LabView, L-Edit
- Experience programming in MATLAB, Python, C++, IDL, and Java
- Experience with UNIX

MEMBERSHIPS

Optical Society of America, Student Member Society of Physics Students at University of Oklahoma

Honors/Awards

- 2011 University of Colorado and NIST Measurement Science and Engineering Fellowship
- 2011 Dept. of Electrical, Comp., & Energy Engineering Dean's Graduate Assistantship and Fellowship
- 2011 University of Oklahoma College of Engineering Distinguished Scholar
- 2011 University of Oklahoma Department of Physics and Astronomy Outstanding Senior Award
- 2007-2011 Award of Excellence Scholarship from the University of Oklahoma Scholars Program
- 2007-2011 Karcher Scholarships from the University of Oklahoma Department of Physics and Astronomy
- 2008-2009 William Schriever Award for Outstanding Scholarship in Engineering Physics
- 2008-2011 University of Oklahoma President's List
- 2008-2011 College of Engineering Dean's List

Teaching/Outreach

- 2013 NanoDays volunteer demonstrating shape-memory alloys to 3rd and 4th grade students
- Mentored undergraduate researchers in lab
- 2007-2010 Tutored Calculus I-III, Physics I and II, Digital Design, and Statics
- 2010 Presented physics demonstrations to high school students visiting the University of Oklahoma